
Customer: AmpleSwap
Website: ampleswap.com
Platform: Binance Smart Chain
Language: Solidity
Date: September 27th, 2021

https://ampleswap.com

Table of contents

Introduction ……………………………………………………………………………………… 4

Project Background ………………………………………………………………………………4

Audit Scope ……………………………………………………………………………………… 4

Claimed Smart Contract Features …………………………………………………………….. 5

Audit Summary ……………....…………………………………………………………………..6

Technical Quick Stats …..……………………………………………………………………… 7

Code Quality ……………………………………………………………………………………. 8

Documentation ………………………………………………………………………………….. 8

Use of Dependencies …………………………………………………………………………… 8

AS-IS overview ………………………………………………………………………………….. 9

Severity Definitions ……………………………………………………………………………... 13

Audit Findings …………………………………………………………………………………… 14

Conclusion ………………………………………………………………………………………. 18

Our Methodology ………………………………………………………………………………... 19

Disclaimers ………………………………………………………………………………………. 21

Appendix

● Code Flow Diagram ……………………………………………………………………... 22

● Slither Results Log ………………………………………………………………………. 27

● Solidity static analysis ….……………………………………………………………….. 32

● Solhint Linter …………………………………………………………………….……….. 37

https://docs.google.com/document/d/128B_RiGGKxW2uaBivZPtOOkjP4DW4W9TxDvdoGMFO_M/edit#bookmark=id.1t3h5sf

THIS IS SECURITY AUDIT REPORT DOCUMENT AND WHICH MAY

CONTAIN INFORMATION WHICH IS CONFIDENTIAL. WHICH

INCLUDES ANY POTENTIAL VULNERABILITIES AND MALICIOUS

CODES WHICH CAN BE USED TO EXPLOIT THE SOFTWARE. THIS

MUST BE REFERRED INTERNALLY AND ONLY SHOULD BE MADE

AVAILABLE TO THE PUBLIC AFTER ISSUES ARE RESOLVED.

Introduction
EtherAuthority was contracted by the AmpleSwap team to perform the Security audit of
AmpleSwap Protocol smart contracts code. The audit has been performed using manual
analysis as well as using automated software tools. This report presents all the findings
regarding the audit performed on September 27th, 2021.

The purpose of this audit was to address the following:
- Ensure that all claimed functions exist and function correctly.

- Identify any security vulnerabilities that may be present in the smart contract.

Project Background
AmpleSwap is the decentralized exchange on Binance Smart Chain. AmpleSwap helps

users make the most out of their crypto in three ways: Trade, Earn, and Win.

Audit scope
Name Code Review and Security Analysis Report for

AmpleSwap Protocol Smart Contracts

Platform BSC / Solidity

File 1 AmpleFactory.sol

File 1 MD5 Hash 6D11EAB401D4F13603F930CEB8770D99

File 2 AmpleRouter.sol

File 2 MD5 Hash 43F779884FF61626BBDB31F411150032

File 3 AmpleToken.sol

File 3 MD5 Hash B8C7DB649ED2C1842CF2D17148009F9E

File 4 MasterChef.sol

File 4 MD5 Hash 85595CEF85327154A5DB19C0F7BA1A79

File 5 SyrupBar.sol

File 5 MD5 Hash E32F26B0601D91A3C1EDE08D5B4BFAE3

Audit Date September 27th, 2021

Revision Date September 29th, 2021

https://bscscan.com/address/0x381fefadab5466bff0e8e96842e8e76a143e8f73#code
https://bscscan.com/address/0x7f1f846bc6b252bdee65f61491a879f0ad7ee926#code
https://bscscan.com/address/0x335f6e0e804b70a96bf9eb8af31588942e9b2515#code
https://bscscan.com/address/0x841046bb0e9d6d9036fd395350f77bf7e26096c9#code
https://bscscan.com/address/0xa09b465a32588cdcdbbf19353821d6bf91dcf641#code

Claimed Smart Contracts Features

Claimed Feature Detail Our Observation

File 1: AmpleFactory.sol
● anyone can create trading pairs of tokens

YES, This is valid.

File 2: AmpleRouter.sol
● Add/remove liquidity

● Token swapping

YES, This is valid.

File 3: AmpleToken.sol
● Name: AmpleSwap Token

● Symbol: AMPLE

● Decimals: 18

● Maximum Supply: 1,000,000,000

YES, This is valid.

File 4: MasterChef.sol
● Bonus Multiplier: 1

● Mints Ample and Syrup Bar tokens as

needed

● MasterChef owner will be time locked

MasterChef contract owner wallet
will be time locked after farming
launch.

File 5: SyrupBar.sol
● Name: SyrupBar Token

● Symbol: SYRUP

● Decimals: 18

YES, This is valid.

Audit Summary
According to the standard audit assessment, Customer`s solidity smart contracts are
“Technically Secured”. These contracts contain owner control, which does not make it
fully decentralized.

You are here

We used various tools like Slither, Solhint and Remix IDE. At the same time this finding is
based on critical analysis of the manual audit.
All issues found during automated analysis were manually reviewed and applicable
vulnerabilities are presented in the Audit overview section. General overview is presented
in AS-IS section and all identified issues can be found in the Audit overview section.

We found 0 critical, 1 high, 0 medium and 3 low and some very low level issues.
These issues are fixed / acknowledged in the revised version of the code.

Investors Advice: Technical audit of the smart contract does not guarantee the ethical

nature of the project. Any owner controlled functions should be executed by the owner with

responsibility. All investors/users are advised to do their due diligence before investing in

the project.

Technical Quick Stats
Main Category Subcategory Result

Contract
Programming

Solidity version not specified Passed
Solidity version too old Moderated

Integer overflow/underflow Passed
Function input parameters lack of check Moderated
Function input parameters check bypass Passed

Function access control lacks management Passed
Critical operation lacks event log Moderated
Human/contract checks bypass Passed

Random number generation/use vulnerability Passed
Fallback function misuse Passed

Race condition Passed
Logical vulnerability Passed
Features claimed Passed

Other programming issues Moderated
Code

Specification
Function visibility not explicitly declared Passed

Var. storage location not explicitly declared Passed
Use keywords/functions to be deprecated Passed

Unused code Passed
Gas Optimization “Out of Gas” Issue Passed

High consumption ‘for/while’ loop Moderated
High consumption ‘storage’ storage Passed

Assert() misuse Passed
Business Risk The maximum limit for mintage not set Passed

“Short Address” Attack Passed
“Double Spend” Attack Passed

Overall Audit Result: PASSED

Code Quality
These audit scope have 5 smart contracts files. Smart contracts also contain Libraries,

Smart contracts, inherits and Interfaces. These are compact and well written contracts.

The libraries in AmpleSwap Protocol are part of its logical algorithm. A library is a different

type of smart contract that contains reusable code. Once deployed on the blockchain (only

once), it is assigned a specific address and its properties / methods can be reused many

times by other contracts in the AmpleSwap Protocol.

The AmpleSwap team has not provided scenario and unit test scripts, which would have

helped to determine the integrity of the code in an automated way.

Code parts are not well commented on smart contracts.

Documentation

We were given an AmpleSwap Protocol smart contracts code in the form BscScan web

link. The hash of that code is mentioned above in the table.

As mentioned above, code parts are not well commented. So it is not easy to quickly

understand the programming flow as well as complex code logic. Comments are very

helpful in understanding the overall architecture of the protocol.

Another source of information was its official website https://ampleswap.com/ which

provided rich information about the project architecture and tokenomics.

Use of Dependencies
As per our observation, the libraries are used in this smart contract infrastructure that are

based on well known industry standard open source projects. And their core code blocks

are written well.

Apart from libraries, its functions are used in external smart contract calls.

https://ampleswap.com/

AS-IS overview

AmpleFactory.sol
Sl. Functions Type Observation Conclusion
1 constructor read Passed No Issue
2 allPairsLength external Passed No Issue
3 createPair external Passed No Issue
4 setFeeTo external Passed No Issue
5 setFeeToSetter external Passed No Issue

AmpleRouter.sol
Sl. Functions Type Observation Conclusion
1 constructor read Passed No Issue
2 ensure modifier Passed No Issue
3 receive external Passed No Issue
4 _addLiquidity internal Passed No Issue
5 addLiquidity external Passed No Issue
6 addLiquidityETH external Passed No Issue
7 removeLiquidity write Passed No Issue
8 removeLiquidityETH write Passed No Issue
9 removeLiquidityWithPermit external Passed No Issue

10 removeLiquidityETHWithPer
mit

external Passed No Issue

11 removeLiquidityETHSupport
ingFeeOnTransferTokens

external Passed No Issue

12 removeLiquidityETHWithPer
mitSupportingFeeOnTransf
erTokens

external Passed No Issue

13 _swap internal Passed No Issue
14 swapExactTokensForToken

s
external Passed No Issue

15 swapTokensForExactToken
s

external Passed No Issue

16 swapExactETHForTokens external Passed No Issue
17 swapTokensForExactETH external Passed No Issue
18 swapExactTokensForETH external Passed No Issue
19 swapETHForExactTokens external Passed No Issue
20 _swapSupportingFeeOnTra

nsferTokens
internal Passed No Issue

21 swapExactTokensForToken
sSupportingFeeOnTransfer
Tokens

external Passed No Issue

22 swapExactETHForTokensS
upportingFeeOnTransferTok
ens

external Passed No Issue

23 swapExactTokensForETHS
upportingFeeOnTransferTok
ens

external Passed No Issue

24 quote write Passed No Issue
25 getAmountOut write Passed No Issue
26 getAmountIn write Passed No Issue
27 getAmountsOut read Passed No Issue
28 getAmountsIn read Passed No Issue

AmpleToken.sol
Sl. Functions Type Observation Conclusion
1 mintFor write access only

Owner
No Issue

2 mint write access only
Owner

No Issue

3 delegates external Passed No Issue
4 delegate external Passed No Issue
5 delegateBySig external Handle

signatures
securely

No Issue

6 getCurrentVotes external Passed No Issue
7 getPriorVotes external Infinite loop

possibility
Refer audit

finding section
8 _delegate internal Passed No Issue
9 _moveDelegates internal Passed No Issue

10 _writeCheckpoint internal Passed No Issue
11 safe32 internal Passed No Issue
12 getChainId internal Passed No Issue
13 getOwner external Passed No Issue
14 name read Passed No Issue
15 decimals read Passed No Issue
16 symbol read Passed No Issue
17 totalSupply read Passed No Issue
18 balanceOf read Passed No Issue
19 transfer write Passed No Issue
20 allowance write Passed No Issue
21 approve write Passed No Issue
22 transferFrom write Passed No Issue
23 increaseAllowance write Passed No Issue
24 decreaseAllowance write Passed No Issue
25 mint write access only

Owner
No Issue

26 _transfer internal Passed No Issue
27 _mint internal Passed No Issue
28 _burn internal Passed No Issue
29 _approve internal Passed No Issue

30 _burnFrom internal Passed No Issue
31 owner read Passed No Issue
32 onlyOwner modifier Passed No Issue
33 renounceOwnership write access only

Owner
No Issue

34 transferOwnership write access only
Owner

No Issue

MasterChef.sol
Sl. Functions Type Observation Conclusion
1 constructor read Passed No Issue
2 updateMultiplier write access only

Owner
No Issue

3 poolLength external Passed No Issue
4 add write Input validation

missing
Refer audit

finding section
5 set write access only

Owner
No Issue

6 updateStakingPool internal Passed No Issue
7 setMigrator / migrate write Rugpull

possibility
Removed this

code
8 getMultiplier read Passed No Issue
9 pendingCake external Passed No Issue

10 massUpdatePools write Infinite loop
possibility

Refer audit
finding section

11 updatePool write Passed No Issue
12 deposit write Passed No Issue
13 withdraw write Passed No Issue
14 enterStaking write Passed No Issue
15 leaveStaking write Passed No Issue
16 emergencyWithdraw write Passed No Issue
17 safeCakeTransfer internal Passed No Issue
18 transferAmpleTokenOwnerS

hip
write access only

Owner
No Issue

19 transferSyrupOwnerShip write access only
Owner

No Issue

20 mint write access only
Owner

No Issue

21 burn write access only
Owner

No Issue

22 safeCakeTransfer write access only
Owner

No Issue

SyrupBar.sol
Sl. Functions Type Observation Conclusion
1 constructor read Passed No Issue
2 owner read Passed No Issue
3 onlyOwner modifier Passed No Issue
4 renounceOwnership write access only

Owner
No Issue

5 transferOwnership write access only
Owner

No Issue

6 getOwner external Passed No Issue
7 name read Passed No Issue
8 decimals read Passed No Issue
9 symbol read Passed No Issue

10 totalSupply read Passed No Issue
11 balanceOf read Passed No Issue
12 transfer read Passed No Issue
13 allowance read Passed No Issue
14 approve write Passed No Issue
15 transferFrom write Passed No Issue
16 increaseAllowance write Passed No Issue
17 decreaseAllowance write Passed No Issue
19 _transfer internal Passed No Issue
20 _mint internal Passed No Issue
21 _burn internal Passed No Issue
22 _approve internal Passed No Issue
23 _burnFrom internal Passed No Issue
24 mintFor write access only

Owner
No Issue

25 mint write access only
Owner

No Issue

26 delegates external Passed No Issue
27 delegate external Passed No Issue
28 delegateBySig external Passed No Issue
29 getCurrentVotes external Passed No Issue
30 getPriorVotes external Passed No Issue
31 _delegate internal Passed No Issue
32 _moveDelegates internal Passed No Issue
33 _writeCheckpoint internal Passed No Issue
34 safe32 internal Passed No Issue
35 getChainId internal Passed No Issue
36 mint write access only

Owner
No Issue

37 burn write access only
Owner

No Issue

38 safeCakeTransfer write Owner can
transfer all

syrup tokens

No Issue when
owner is

masterchef

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to exploit
and can lead to token loss etc.

High
High-level vulnerabilities are difficult to exploit; however,
they also have significant impact on smart contract
execution, e.g. public access to crucial

Medium Medium-level vulnerabilities are important to fix;
however, they can’t lead to tokens lose

Low
Low-level vulnerabilities are mostly related to outdated,
unused etc. code snippets, that can’t have significant
impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations and info
statements can’t affect smart contract execution and can
be ignored.

Audit Findings

Critical

No Critical severity vulnerabilities were found.

High

(1) Migrator code present - Masterchef.sol

Migrator code in pancakeswap fork project is always criticized for rugpull. We suggest

removing this if not really needed.

Reference: https://goosedefi.gitbook.io/goose-finance/security/rugpull-migrator-code

Update: This migrator code is removed in the revised contract code
https://bscscan.com/address/0xeb642d600bf593cb21e1551e9a15426ff6d42f82#code

Medium

No Medium severity vulnerabilities were found.

Low

(1) Duplicate LP tokens may create discrepancy - MasterChef.sol

https://goosedefi.gitbook.io/goose-finance/security/rugpull-migrator-code
https://bscscan.com/address/0xeb642d600bf593cb21e1551e9a15426ff6d42f82#code

As per the comment, the add function must not allow the owner to add the same LP token

more than once.

Resolution: We suggest using some conditions to not allow the user to add the same LP

token more than once.

(2) Infinite loop possibility - MasterChef.sol

If there are so many pools, then this logic will fail, as it might hit the block’s gas limit. If

there are very limited pools, then this will work, but will cost more gas.

Resolution: Just use a mapping that will map wallet to bool and make excluded wallets to

be true. This logic will not have any gas or scalability issues.

PS: This possibility is also there in AmpleToken and SyrupBar. We suggest adjusting the

logic, or keeping array length limited to prevent this issue.

(3) Critical operation lacks event log. It is recommended to fire an event when an important

state change operation is happening. Events are missing for below functions in

MasterChef contract:

● updateStakingPool - MasterChef contract

● updatePool - MasterChef contract

● migrate - MasterChef contract

● setFeeTo - AmpleFactory contract

● setFeeToSetter - AmpleFactory contract

Very Low / Informational / Best practices:

(1) Solidity version:

Using the latest solidity will prevent any compiler level bugs.

Resolution: Please use 0.8.7 which is the latest version at the time of this audit.

(2) Visibility external over public:

It is recommended to specify function visibility as external instead of public, if that function

is not called from the contract internally. This is considered a gas saver.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

(3) Handle signature carefully - AmpleToken.sol

This feature is useful as it allows ease to users to delegate by making signatures. On the

client side, these signatures must be handled securely because these signatures will allow

anyone to interact with the contract on behalf of the user. Although the risk is very minimal,

we suggest handling these signatures securely to prevent any phishing scams.

https://ethereum.stackexchange.com/questions/19380/external-vs-public-best-practices

Centralization
These smart contracts have some functions which can be executed by the Admin (Owner)

only. If the admin wallet private key would be compromised, then it would create trouble.

Following are Admin functions:

● mintFor: The MasterChef owner can create an `_amount` token to `_to`.

● mint: The AmpleToken owner can mint a token.

● updateMultiplier: The MasterChef owner can update multipliers.

● add: The MasterChef owner can add a new lp to the pool.

● set: The MasterChef owner can update the given pool's CAKE allocation point.

● setMigrator: The MasterChef owner can set the migrator contract.

● transferAmpleTokenOwnerShip: The MasterChef owner can transfer ample tokens

to ownership.

● transferSyrupOwnerShip: The MasterChef owner can transfer syrup tokens to

ownership.

● mint: The Syrup owner can create an `_amount` token to `_to`.

● burn: The Syrup owner can burn an amount from the account.

● safeCakeTransfer: The Syrup owner can call this function.

Conclusion

We were given contract codes. And we have used all possible tests based on given

objects as files. We observed some issues in the smart contracts and they are

resolved/acknowledged. So, it’s good to go to production.

Since possible test cases can be unlimited for such smart contracts protocol, we provide

no such guarantee of future outcomes. We have used all the latest static tools and manual

observations to cover maximum possible test cases to scan everything.

Smart contracts within the scope were manually reviewed and analyzed with static

analysis tools. Smart Contract’s high-level description of functionality was presented in the

As-is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the reviewed

code.

Security state of the reviewed contract, based on standard audit procedure scope, is

“Technically Secured”.

Our Methodology

We like to work with a transparent process and make our reviews a collaborative effort.

The goals of our security audits are to improve the quality of systems we review and aim

for sufficient remediation to help protect users. The following is the methodology we use in

our security audit process.

Manual Code Review:
In manually reviewing all of the code, we look for any potential issues with code logic, error

handling, protocol and header parsing, cryptographic errors, and random number

generators. We also watch for areas where more defensive programming could reduce the

risk of future mistakes and speed up future audits. Although our primary focus is on the

in-scope code, we examine dependency code and behavior when it is relevant to a

particular line of investigation.

Vulnerability Analysis:
Our audit techniques included manual code analysis, user interface interaction, and

whitebox penetration testing. We look at the project's web site to get a high level

understanding of what functionality the software under review provides. We then meet with

the developers to gain an appreciation of their vision of the software. We install and use

the relevant software, exploring the user interactions and roles. While we do this, we

brainstorm threat models and attack surfaces. We read design documentation, review

other audit results, search for similar projects, examine source code dependencies, skim

open issue tickets, and generally investigate details other than the implementation.

Documenting Results:
We follow a conservative, transparent process for analyzing potential security

vulnerabilities and seeing them through successful remediation. Whenever a potential

issue is discovered, we immediately create an Issue entry for it in this document, even

though we have not yet verified the feasibility and impact of the issue. This process is

conservative because we document our suspicions early even if they are later shown to

not represent exploitable vulnerabilities. We generally follow a process of first documenting

the suspicion with unresolved questions, then confirming the issue through code analysis,

live experimentation, or automated tests. Code analysis is the most tentative, and we

strive to provide test code, log captures, or screenshots demonstrating our confirmation.

After this we analyze the feasibility of an attack in a live system.

Suggested Solutions:
We search for immediate mitigations that live deployments can take, and finally we

suggest the requirements for remediation engineering for future releases. The mitigation

and remediation recommendations should be scrutinized by the developers and

deployment engineers, and successful mitigation and remediation is an ongoing

collaborative process after we deliver our report, and before the details are made public.

Disclaimers
EtherAuthority.io Disclaimer

EtherAuthority team has analyzed this smart contract in accordance with the best industry
practices at the date of this report, in relation to: cybersecurity vulnerabilities and issues in
smart contract source code, the details of which are disclosed in this report, (Source
Code); the Source Code compilation, deployment and functionality (performing the
intended functions).

Due to the fact that the total number of test cases are unlimited, the audit makes no
statements or warranties on security of the code. It also cannot be considered as a
sufficient assessment regarding the utility and safety of the code, bugfree status or any
other statements of the contract. While we have done our best in conducting the analysis
and producing this report, it is important to note that you should not rely on this report only.
We also suggest conducting a bug bounty program to confirm the high level of security of
this smart contract.

Technical Disclaimer

Smart contracts are deployed and executed on the blockchain platform. The platform, its
programming language, and other software related to the smart contract can have their
own vulnerabilities that can lead to hacks. Thus, the audit can’t guarantee explicit security
of the audited smart contracts.

Appendix

Code Flow Diagram - AmpleSwap Protocol

AmpleFactory Token

AmpleRouter Token

Ample Token

MasterChef Token

SyrupBarToken

Slither Results Log

Slither log >> AmpleRouter.sol

Slither log >> AmpleToken.sol

Slither log >> MasterChef.sol

Slither log >> SyrupBar.sol

Slither log >> AmpleFactory.sol

Solidity Static Analysis

AmpleFactory.sol

AmpleRouter.sol

AmpleToken.sol

MasterChef.sol

SyrupBar.sol

Solhint Linter

AmpleFactory.sol

AmpleFactory.sol:9:1: Error: Compiler version =0.5.16 does not satisfy
the r semver requirement
AmpleFactory.sol:43:5: Error: Function name must be in mixedCase
AmpleFactory.sol:44:5: Error: Function name must be in mixedCase
AmpleFactory.sol:61:5: Error: Function name must be in mixedCase
AmpleFactory.sol:94:5: Error: Function name must be in mixedCase
AmpleFactory.sol:95:5: Error: Function name must be in mixedCase
AmpleFactory.sol:104:35: Error: Use double quotes for string literals
AmpleFactory.sol:108:35: Error: Use double quotes for string literals
AmpleFactory.sol:112:49: Error: Use double quotes for string literals
AmpleFactory.sol:119:28: Error: Constant name must be in capitalized
SNAKE_CASE
AmpleFactory.sol:119:35: Error: Use double quotes for string literals
AmpleFactory.sol:120:28: Error: Constant name must be in capitalized
SNAKE_CASE
AmpleFactory.sol:120:37: Error: Use double quotes for string literals
AmpleFactory.sol:121:27: Error: Constant name must be in capitalized
SNAKE_CASE
AmpleFactory.sol:126:20: Error: Variable name must be in mixedCase
AmpleFactory.sol:136:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
AmpleFactory.sol:141:27: Error: Use double quotes for string literals
AmpleFactory.sol:143:33: Error: Use double quotes for string literals
AmpleFactory.sol:192:29: Error: Avoid to make time-based decisions in
your business logic
AmpleFactory.sol:192:46: Error: Use double quotes for string literals
AmpleFactory.sol:195:17: Error: Use double quotes for string literals
AmpleFactory.sol:201:78: Error: Use double quotes for string literals
AmpleFactory.sol:231:5: Error: Explicitly mark visibility of state
AmpleFactory.sol:269:63: Error: Use double quotes for string literals
AmpleFactory.sol:285:32: Error: Use double quotes for string literals
AmpleFactory.sol:298:45: Error: Avoid to use low level calls.
AmpleFactory.sol:299:76: Error: Use double quotes for string literals
AmpleFactory.sol:320:40: Error: Use double quotes for string literals
AmpleFactory.sol:327:69: Error: Use double quotes for string literals
AmpleFactory.sol:328:40: Error: Avoid to make time-based decisions in
your business logic
AmpleFactory.sol:378:32: Error: Use double quotes for string literals
AmpleFactory.sol:399:45: Error: Use double quotes for string literals
AmpleFactory.sol:413:51: Error: Use double quotes for string literals
AmpleFactory.sol:415:67: Error: Use double quotes for string literals
AmpleFactory.sol:422:49: Error: Use double quotes for string literals
AmpleFactory.sol:431:49: Error: Use double quotes for string literals
AmpleFactory.sol:435:105: Error: Use double quotes for string literals
AmpleFactory.sol:476:35: Error: Use double quotes for string literals
AmpleFactory.sol:478:39: Error: Use double quotes for string literals
AmpleFactory.sol:479:56: Error: Use double quotes for string literals
AmpleFactory.sol:482:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
AmpleFactory.sol:493:44: Error: Use double quotes for string literals

AmpleRouter.sol

AmpleRouter.sol:11:1: Error: Compiler version >=0.6.0 does not satisfy
the r semver requirement
AmpleRouter.sol:17:45: Error: Avoid to use low level calls.
AmpleRouter.sol:18:76: Error: Use double quotes for string literals
AmpleRouter.sol:23:45: Error: Avoid to use low level calls.
AmpleRouter.sol:24:76: Error: Use double quotes for string literals
AmpleRouter.sol:29:45: Error: Avoid to use low level calls.
AmpleRouter.sol:30:76: Error: Use double quotes for string literals
AmpleRouter.sol:34:27: Error: Avoid to use low level calls.
AmpleRouter.sol:35:26: Error: Use double quotes for string literals
AmpleRouter.sol:41:1: Error: Compiler version >=0.6.2 does not satisfy
the r semver requirement
AmpleRouter.sol:45:5: Error: Function name must be in mixedCase
AmpleRouter.sol:139:1: Error: Compiler version >=0.6.2 does not satisfy
the r semver requirement
AmpleRouter.sol:184:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
AmpleRouter.sol:201:5: Error: Function name must be in mixedCase
AmpleRouter.sol:211:35: Error: Use double quotes for string literals
AmpleRouter.sol:215:35: Error: Use double quotes for string literals
AmpleRouter.sol:219:49: Error: Use double quotes for string literals
AmpleRouter.sol:225:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
AmpleRouter.sol:242:5: Error: Function name must be in mixedCase
AmpleRouter.sol:243:5: Error: Function name must be in mixedCase
AmpleRouter.sol:260:5: Error: Function name must be in mixedCase
AmpleRouter.sol:280:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
AmpleRouter.sol:289:35: Error: Use double quotes for string literals
AmpleRouter.sol:291:39: Error: Use double quotes for string literals
AmpleRouter.sol:315:30: Error: Use double quotes for string literals
AmpleRouter.sol:316:47: Error: Use double quotes for string literals
AmpleRouter.sol:322:31: Error: Use double quotes for string literals
AmpleRouter.sol:323:50: Error: Use double quotes for string literals
AmpleRouter.sol:332:32: Error: Use double quotes for string literals
AmpleRouter.sol:333:50: Error: Use double quotes for string literals
AmpleRouter.sol:341:35: Error: Use double quotes for string literals
AmpleRouter.sol:352:35: Error: Use double quotes for string literals
AmpleRouter.sol:364:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
AmpleRouter.sol:384:1: Error: Compiler version >=0.5.0 does not satisfy
the r semver requirement
AmpleRouter.sol:399:39: Error: Variable name must be in mixedCase
AmpleRouter.sol:402:29: Error: Avoid to make time-based decisions in
your business logic
AmpleRouter.sol:402:46: Error: Use double quotes for string literals
AmpleRouter.sol:406:35: Error: Variable name must be in mixedCase
AmpleRouter.sol:434:55: Error: Use double quotes for string literals
AmpleRouter.sol:439:55: Error: Use double quotes for string literals
AmpleRouter.sol:500:40: Error: Use double quotes for string literals
AmpleRouter.sol:501:40: Error: Use double quotes for string literals
AmpleRouter.sol:615:62: Error: Use double quotes for string literals
AmpleRouter.sol:629:44: Error: Use double quotes for string literals
AmpleRouter.sol:643:34: Error: Use double quotes for string literals

AmpleRouter.sol:645:62: Error: Use double quotes for string literals
AmpleRouter.sol:657:48: Error: Use double quotes for string literals
AmpleRouter.sol:659:44: Error: Use double quotes for string literals
AmpleRouter.sol:674:48: Error: Use double quotes for string literals
AmpleRouter.sol:676:62: Error: Use double quotes for string literals
AmpleRouter.sol:692:34: Error: Use double quotes for string literals
AmpleRouter.sol:694:42: Error: Use double quotes for string literals
AmpleRouter.sol:736:13: Error: Use double quotes for string literals
AmpleRouter.sol:751:34: Error: Use double quotes for string literals
AmpleRouter.sol:759:13: Error: Use double quotes for string literals
AmpleRouter.sol:774:48: Error: Use double quotes for string literals
AmpleRouter.sol:780:44: Error: Use double quotes for string literals

AmpleToken.sol

AmpleToken.sol:5:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
AmpleToken.sol:28:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
AmpleToken.sol:95:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
AmpleToken.sol:192:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
AmpleToken.sol:220:25: Error: Use double quotes for string literals
AmpleToken.sol:236:26: Error: Use double quotes for string literals
AmpleToken.sol:279:29: Error: Use double quotes for string literals
AmpleToken.sol:297:26: Error: Use double quotes for string literals
AmpleToken.sol:337:26: Error: Use double quotes for string literals
AmpleToken.sol:381:1: Error: Compiler version >=0.6.6 does not satisfy
the r semver requirement
AmpleToken.sol:434:50: Error: Use double quotes for string literals
AmpleToken.sol:437:58: Error: Use double quotes for string literals
AmpleToken.sol:438:26: Error: Use double quotes for string literals
AmpleToken.sol:460:43: Error: Use double quotes for string literals
AmpleToken.sol:493:59: Error: Use double quotes for string literals
AmpleToken.sol:508:49: Error: Use double quotes for string literals
AmpleToken.sol:518:37: Error: Use double quotes for string literals
AmpleToken.sol:541:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
AmpleToken.sol:692:59: Error: Use double quotes for string literals
AmpleToken.sol:732:69: Error: Use double quotes for string literals
AmpleToken.sol:769:39: Error: Use double quotes for string literals
AmpleToken.sol:770:42: Error: Use double quotes for string literals
AmpleToken.sol:772:59: Error: Use double quotes for string literals
AmpleToken.sol:787:40: Error: Use double quotes for string literals
AmpleToken.sol:806:40: Error: Use double quotes for string literals
AmpleToken.sol:808:61: Error: Use double quotes for string literals
AmpleToken.sol:831:38: Error: Use double quotes for string literals
AmpleToken.sol:832:40: Error: Use double quotes for string literals
AmpleToken.sol:849:60: Error: Use double quotes for string literals
AmpleToken.sol:854:1: Error: Compiler version >0.6.6 does not satisfy
the r semver requirement
AmpleToken.sol:857:30: Error: Use double quotes for string literals
AmpleToken.sol:857:49: Error: Use double quotes for string literals
AmpleToken.sol:859:29: Error: Constant name must be in capitalized

SNAKE_CASE
AmpleToken.sol:975:17: Error: Avoid to make time-based decisions in
your business logic
AmpleToken.sol:1097:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases

MasterChef.sol

MasterChef.sol:6:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
MasterChef.sol:34:25: Error: Use double quotes for string literals
MasterChef.sol:50:26: Error: Use double quotes for string literals
MasterChef.sol:93:29: Error: Use double quotes for string literals
MasterChef.sol:111:26: Error: Use double quotes for string literals
MasterChef.sol:151:26: Error: Use double quotes for string literals
MasterChef.sol:195:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
MasterChef.sol:293:1: Error: Compiler version >=0.6.6 does not satisfy
the r semver requirement
MasterChef.sol:346:50: Error: Use double quotes for string literals
MasterChef.sol:349:58: Error: Use double quotes for string literals
MasterChef.sol:350:26: Error: Use double quotes for string literals
MasterChef.sol:372:43: Error: Use double quotes for string literals
MasterChef.sol:405:59: Error: Use double quotes for string literals
MasterChef.sol:420:49: Error: Use double quotes for string literals
MasterChef.sol:430:37: Error: Use double quotes for string literals
MasterChef.sol:454:1: Error: Compiler version >=0.6.0 does not satisfy
the r semver requirement
MasterChef.sol:505:13: Error: Use double quotes for string literals
MasterChef.sol:526:13: Error: Use double quotes for string literals
MasterChef.sol:542:69: Error: Use double quotes for string literals
MasterChef.sol:546:53: Error: Use double quotes for string literals
MasterChef.sol:552:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
MasterChef.sol:576:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
MasterChef.sol:644:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
MasterChef.sol:796:59: Error: Use double quotes for string literals
MasterChef.sol:836:69: Error: Use double quotes for string literals
MasterChef.sol:873:39: Error: Use double quotes for string literals
MasterChef.sol:874:42: Error: Use double quotes for string literals
MasterChef.sol:876:59: Error: Use double quotes for string literals
MasterChef.sol:891:40: Error: Use double quotes for string literals
MasterChef.sol:910:40: Error: Use double quotes for string literals
MasterChef.sol:912:61: Error: Use double quotes for string literals
MasterChef.sol:935:38: Error: Use double quotes for string literals
MasterChef.sol:936:40: Error: Use double quotes for string literals
MasterChef.sol:953:60: Error: Use double quotes for string literals
MasterChef.sol:960:1: Error: Compiler version >0.6.6 does not satisfy
the r semver requirement
MasterChef.sol:963:30: Error: Use double quotes for string literals
MasterChef.sol:963:49: Error: Use double quotes for string literals
MasterChef.sol:965:29: Error: Constant name must be in capitalized
SNAKE_CASE

MasterChef.sol:1081:17: Error: Avoid to make time-based decisions in
your business logic
MasterChef.sol:1203:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
MasterChef.sol:1210:1: Error: Compiler version >=0.6.12 does not
satisfy the r semver requirement
MasterChef.sol:1214:28: Error: Use double quotes for string literals
MasterChef.sol:1214:46: Error: Use double quotes for string literals
MasterChef.sol:1350:17: Error: Avoid to make time-based decisions in
your business logic
MasterChef.sol:1472:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
MasterChef.sol:1480:1: Error: Compiler version >=0.6.12 does not
satisfy the r semver requirement
MasterChef.sol:1540:20: Error: Variable name must be in mixedCase
MasterChef.sol:1697:29: Error: Use double quotes for string literals
MasterChef.sol:1719:29: Error: Use double quotes for string literals
MasterChef.sol:1798:42: Error: Use double quotes for string literals
MasterChef.sol:1803:42: Error: Use double quotes for string literals

SyrupBar.sol

SyrupBar.sol:5:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
SyrupBar.sol:28:1: Error: Compiler version >=0.6.0 <0.8.0 does not
satisfy the r semver requirement
SyrupBar.sol:94:1: Error: Compiler version >=0.4.0 does not satisfy the
r semver requirement
SyrupBar.sol:191:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
SyrupBar.sol:219:25: Error: Use double quotes for string literals
SyrupBar.sol:235:26: Error: Use double quotes for string literals
SyrupBar.sol:278:29: Error: Use double quotes for string literals
SyrupBar.sol:296:26: Error: Use double quotes for string literals
SyrupBar.sol:336:26: Error: Use double quotes for string literals
SyrupBar.sol:380:1: Error: Compiler version >=0.6.6 does not satisfy
the r semver requirement
SyrupBar.sol:433:50: Error: Use double quotes for string literals
SyrupBar.sol:436:58: Error: Use double quotes for string literals
SyrupBar.sol:437:26: Error: Use double quotes for string literals
SyrupBar.sol:459:43: Error: Use double quotes for string literals
SyrupBar.sol:492:59: Error: Use double quotes for string literals
SyrupBar.sol:507:49: Error: Use double quotes for string literals
SyrupBar.sol:517:37: Error: Use double quotes for string literals
SyrupBar.sol:541:1: Error: Compiler version >=0.4.0 does not satisfy
the r semver requirement
SyrupBar.sol:688:59: Error: Use double quotes for string literals
SyrupBar.sol:728:69: Error: Use double quotes for string literals
SyrupBar.sol:765:39: Error: Use double quotes for string literals
SyrupBar.sol:766:42: Error: Use double quotes for string literals
SyrupBar.sol:768:59: Error: Use double quotes for string literals
SyrupBar.sol:783:40: Error: Use double quotes for string literals
SyrupBar.sol:802:40: Error: Use double quotes for string literals
SyrupBar.sol:804:61: Error: Use double quotes for string literals
SyrupBar.sol:827:38: Error: Use double quotes for string literals

SyrupBar.sol:828:40: Error: Use double quotes for string literals
SyrupBar.sol:845:60: Error: Use double quotes for string literals
SyrupBar.sol:851:1: Error: Compiler version >0.6.6 does not satisfy the
r semver requirement
SyrupBar.sol:856:29: Error: Constant name must be in capitalized
SNAKE_CASE
SyrupBar.sol:972:17: Error: Avoid to make time-based decisions in your
business logic
SyrupBar.sol:1094:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases
SyrupBar.sol:1099:1: Error: Compiler version >=0.6.12 does not satisfy
the r semver requirement
SyrupBar.sol:1234:17: Error: Avoid to make time-based decisions in your
business logic
SyrupBar.sol:1356:9: Error: Avoid to use inline assembly. It is
acceptable only in rare cases

Software analysis result:

These software reported many false positive results and some are informational issues.

So, those issues can be safely ignored.

